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Abstract

Furstenberg conjectured that the Lebesgue measure is the unique non-atomic ergodic probabil-
ity measure on the circle that is invariant for both the doubling and tripling maps. Furstenberg
proved in 1967 that every minimal set is either finite or the whole space, as a special case of his
results, which is a topological equivalent of the conjectured result. In 1990, Rudolph proved a
partial result, namely, that the Lebesgue measure is the only such measure if we add a condition
that the entropy of the measure is positive.

This expository paper illustrates the method described by Kalinin and Katok in 2001, which
is used to prove the result of Rudolph in a greater generality. The main objective of our paper
is to elaborate on how the method of Kalinin and Katok applies to the setting of Furstenberg’s
conjecture. A secondary objective is to discuss a topological analogue of Furstenberg’s conjecture,
namely, that the minimal sets of the action by the doubling and tripling maps on the circle is either
finite or the circle itself.
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Chapter 1

Introduction

Throughout the paper, we use the following notations. K is the circle R/Z. We usually use the
additive form K = [0, 1]/0~1. E5 : K — K is the doubling map Fs(x) = 2x,and B3 : K —
K isthe tripling map F3(z) = 3z. «is the N? group action on K defined by a(n,0)(x) = E¥(z)
and (0, m)(x) = E5"(x). We say that a measure p on K is a-invariant if and only if, for each
(n,m) € N? and measurable £ C K, we have j(a(n, m) " (E)) = u(E).

Furstenberg’s conjecture, which is the focal point of the paper, is the following!: Lebesgue
measure is the unique non-atomic a-invariant ergodic probability measure on K. Furstenberg
proved that every minimal set is either finite or the whole space as a special case of his results
in [2], which is a topological equivalent of the conjectured result. Rudolph [6] proved a partial
result, namely, that the Lebesgue measure is the only such measure if the entropy of the measure
is assumed to be positive.

This expository paper illustrates the method described by Kalinin and Katok in [3], which is
used to prove the result of Rudolph in a greater generality. The paper by Kalinin and Katok also
outlines how the method applies to our setting, and the main objective of our paper is to elaborate
on this discussion. The secondary objective is to discuss the result that the minimal sets of the

action is either finite or K, which is a topological analogue of Furstenberg’s conjecture.

'For a history of the conjecture, see http://www.aimath.org/ WWN/furstenburg/articles/html/3a/
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Chapter 2

Preliminaries

2.1 Topological Dynamics

We denote by O(z) the orbitof x € K, i.e. O(x) = {a(n,m)(z) | n,m > 0}. Aset E C K is
called invariant if and only if a(n, m)(E) C E forany n,m > 0. E C K is called minimal if
and only if £’ does not contain any non-empty, proper, closed invariant subset under the action.
x € K is called a recurrent point for f : K — K, if and only if for eache > Oand N > 0,
there exists n > N such that | f"(z) — z| < e.
See [4] for discussions of expansive maps and recurrent properties of topological dynamical

systems.

2.2 Natural Extension

Given any measurable dynamical system (M, B, i, f), where y is a probability measure, one can
consider its natural extension (M, B, [i, o). The phase spaceis givenby M := {(w;) € M" | f(w;) = w;_1},

i.e. wy is the current state, and each w; for j > 0 is the 5™ past. Cylinders
C(Eiu T ink) = {(wj) | wiy € By, y Wiy, € Elk}

generate 3.
If M has a topology, the topology on M is generated by cylinders of open sets. If M has a
metric d, it can be lifted to a metric on d, and it is given by d(w, 1) = 372 d(w, 7k ) /2¥.

Remark. 1. Foreachx € M, o[ -1, is uniformly contracting with respect to d.

2. If A is a closed invariant set of M, then A = 7~ 1(A) is the unique closed invariant subset
of M such that 7(A) = A.

3. If i is an invariant measure for o, then 7, fi is invariant for f.
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Another notable property of a natural extension is the following, which is discussed in [7].

Proposition 2.2.1. Let M be a complete separable metric space, and f : M — M be continuous.

Every invariant probability measure z admits a unique lift /i to M. Furthermore,

i(C(Eo, -+, Ey)) = G(C(f " (Eo) N--- N [~ (Bg-1) N Ex))
p(f (o) M-+ N fH(Br1) N Ey).

2.3 Measurable Hull of a Partition

[1] contains a good discussion on ideas which we will need in our subsequent discussion, namely,
measurable partition, measurable hull, and Pinsker partition. We summarize the discussion here.

Let £ and 7 be partitions of a compact metric space X with a Borel measure ;1. We do not
require elements of a partition to be measurable. We denote by £ V 7 the join of £ and 7, which
is definedby ( Vi := {UNV |U €&,V € n}. Wesay that £ is finer than 7 if and only if, for
each U € &, there exists V' € n such that U C V. We denote this relation by n < £. </is a partial
order of the collection of all partitions of X. We say that £ and 7 are equivalent mod 0 if and only
if there exists a set £ C X of full measure such that {UNFE |U € {} ={VNE |V €n},and
we write £ = n(mod 0).

Define B(&) to be the collection of all measurable subsets of X that are unions of elements of €.
Let 7 be the Borel o-algebra on X. Note thatd(A, B) = p(AA B) defines a pseudo-metric on X,
which, in turn, defines an equivalence relation on X by A ~ B <= d(A, B) = 0. We say that
(X, T, ) is separable if and only if 7/~ is separable as a metric space. For a separable measure
space (X, 7T,u) anda A C T, a partition of £ of X into measurable sets such that A = B(¢)
(mod 0) can be constructed [1, p.9], and we denote this by =(.A). We define the measurable hull
of a partition £ to be H(§) := Z(B(£)). We say that a partition is measurable if and only if it is
equivalent mod 0 to its measurable hull. The measurable hull is the finest measurable partition
which coarsens &.

LetT : X — X be a measure-preserving map with a measure-preserving inverse, and & be a

partition consisting of measurable sets. Define
o
&=\ T
n=0

£~ is a measurable partition, and has the property that, if £~ is invariant (i.e. T7'¢~ = £7) then

¢ has zero entropy, and otherwise, £ has positive entropy [1, p.21]. Next, define

() :==H ( A T‘”&‘) :
n=1



where £ A 7 is defined as the finest partition that coarsens both £ and 7). For I1(), we have the
following: if n < II(¢) is a finite of countable partition with finite entropy, then the entropy of 1) is
zero [1, p.22]. Now, consider all partitions with such property. The collection is partially ordered
by <, so the finest partition such that any coarser finite partition has zero entropy exists. We call
the partition the Pinsker partition, and denote it by (7", £). An important fact is that the Pinsker
partition is the measurable hull of the partition into global unstable manifolds [1, p.27], which

appears in the discussion of the main theorem.



Chapter 3

Minimal Sets of The Action

Proposition 3.0.1. The orbit of a rational point is periodic or eventually periodic. The periodic
orbits are {0} and the orbit of% where (¢,2) = (¢,3) = (p,q) =1
Proof. This is easy to check. ]

Lemma 3.0.2. 1 is an accumulation point of {2"3™(mod 1) | n,m € Z}.
Proof. Note that the orbit of 3% consists of all points of the form 3% where (¢,3) = 1. Since

(3,3% — 1) = 1, we have 31;_1 € {273 %(mod 1) } n >0} forany k& > 0. It follows that

31;;1 € {2"3™(mod 1) | n,m € Z} for any k > 0. O

Theorem 3.0.3. The orbit of an irrational point is dense.
Proof. Fix a € R\Q. Suppose O(«) is not dense. Note that W := O(«) has an empty interior,
since otherwise W = K by invariance of W. Hence, every point of I¥ is a boundary point. Since
W is compact, the set of recurrent points R of Es3|y, is non-empty. Fix z € R. Since K\W
consists of open intervals,  is contained in the boundary of some open interval I. Without loss
of generality, we may assume that x is the right endpoint of 1. Suppose that the length of I is (.
By the preceding lemma, there exists n,m > 0 such thatx — [ < g—;x < z. Lete := :,%
Since x is a recurrent point, there exists // > m such that ‘3M () — :r‘ < min (=¢2,1). Then,

€
we have 273M "4 ¢ [, which contradicts the fact that T is invariant.

Corollary 3.0.4. Every closed invariant set of the action is either K or finite.



Chapter 4
Main Theorem

In this section, we follow the discussions in sections 2.1-2.3 of [3]. Let x be a positive-entropy
ergodic invariant measure on (K, ). Our goal is to show that 1 is the Lebesgue measure. Sections
2.1 and 2.2 describes the method for Cartan actions on the three-dimensional torus. Section 2.3

outlines how the method can be adopted to our setting.

4.1 The Structure of the Natural Extension

The natural extension of our action on K, which we denote by .S, is the dual group to the discrete
group Z(1/2,1/3), and it is isomorphic to a solenoid [5, Appendix]. S can be thought of as a

subset of K%°; more precisely, each point (ws,j) has the form

wo,0 W10 W20

wo,1 WwWi,1

wo,2

where F(w; j) = wi—1,j and E3(w; j) = w; j—1. The maps E» and E3 extend to shifts on K2,

which we denote by o3 and o3, respectively. We have

Wo,0 W10 W20 - Ez(wo0) woo wio
wo,1 w11 e Es(wo,1) wo,1

g9 . X —>
wo2 - " Es(wo,2)



and

Wo0 wio wao - E3(woo) Es(wipg) Es(wap)
wo,1 W11 wo,0 w1,0

o3 . . . —
wo,2 : . wo,1

Thus, the action on K extends to S. We denote this action by «, as we will no longer work with
(K, o), and there will be no confusion. 7 : S — K is defined by w — wy . By Proposition 2.1,
( lifts to a measure that is invariant with respect to the action on S. We denote this measure by
.

Note that once we fix wp o, wip for ¢ > 1, and wy ; for j > 1, w; ; for each ¢,5 > 0is
determined. For each wy o, there are two possible values of wy ¢ and three possible values of wp ;.
The same observation holds for w; g and wy ; for each 4, j > 1, as well. Note that o5 is a contraction
on S with respect to the usual metric, and its Lipschitz constant is 1/2, and the Lipshitz constant
of 03 is 1/3. Hence, m : S — K can be thought of as a fiber bundle with Zs x Z3 as fibers,
where Zj and Zj3 are 2- and 3-adic integers respectively. Recall that a 2-adic integer a can be
represented as a sequence (ag, a1, - - - ) via the power series expansion a = Y ;o a;2%, where
a; € {0,1}. The Zy coordinate encodes the past of p with respect to F5 The same observation
holds for the Zs3 coordinate.

4.2 Suspension Construction

Following the discussion in [3, Section 1.2.2], we obtain an R?-action starting from our Z?-action
on S. We refer to the object that RZ acts on as S, and the reason is as follows. First, the R?-action
is similar to the Z2-action on S, and second, we will focus on the R?-action instead of the Z?-
action from now on. We think of a line in R? as a “time direction” of the action. The construction

allows us to speak of “acting in an irrational time direction,” as we do in the following discussion.

4.3 Real Foliation IV of S

Recall that each point in .S has the form

wo,0 W1,0 W20

wo,1 WwWi,1

wo,2
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with restrictions Fa(w; j) = wij—1; and E3(w; ;) = w;j—1. Now, consider perturbing wp o,
and observe how it affects the past states. It is easy to see that when wp g — wp o + €, we have
w10 — w10 + €/2, w1 — wo,1 + €/3, and so on for the rest of the past states. By varying the
amount of purturbation €, we obtain a leaf going through (w; ;). A collection of these leaves glued

together gives a foliation on .S, which we denote by W. We refer to IV as the real foliation of .S.

4.4 Critical Time Direction for W

Given two points on W, the action by (1, 0) doubles the distance between the two, and the action
by (0, 1) triples it. Then, there is some —1 < y < 0 such that the action by (1, y) is an isometry
on W. The purpose of this section is to find such y by computing the Lyapunov exponents of the
action. See [5, Appendix] for a discussion on Lyapunov exponents for maps on p-adic integers.
For each 2 € K, there is a small neighborhood U > x such that 771 (U) can be identified
with U x Zg X Z3. Welet R x Q2 x Q3 play the role of a tangent space at a pointin U X Zy X Zs.
We equip R x Q3 x Q3 with the product norm of the usual norms on R, Zs, and Z3. Then, the

Lyapunov exponent of the action by (z,y) € R? in the real direction is

log |[(x, y)™.(1,0,0)]]

Az, y) = lim -
1 Tmaym
L logll@7ma,0,0)]
m—o0 m
~ lim xmlog2 4+ ymlog3
m—ro0 m
= zlog2 + ylog3.

Hence, the action by each point in the line {(z,y) € R? | zlog2 + ylog3 = 0} has zero

Lyapunov exponent. We call this time direction the critical direction for W.

4.5 The ergodic components of the action in the critical direction

First, we check that the action in the critical direction is ergodic. We already know that the action
by (n, m) for any n, m € Z is ergodic, but not for any (z,y) € R2. To prove the ergodicity of the
action in the critical direction, we show that each ergodic component of the action in the critical
direction is a union of leaves of W. We follow the argument in [3][Section 2.2.3].

Let a be a non-zero element in the critical direction, suchasa = (1, —log2/log3), and let ¢,
be the partition into ergodic components of a. Let 7 (1) be the measurable hull of the partition
into the leaves of W.

Let W’ be the one-dimensional stable foliation of a. The Birkhoff sum of any continuous
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function on a stable leaf is constant, so every stable leaf of a is contained in an ergodic component
of a. Hence, we have §, < W’. Since H(W’) is the finest measurable partition which coarsens
W', we have £, < H(W').

Let W be the unstable foliation of a. Let b be an element not in the critical direction such
that W' is its stable foliation, and W & W" is its unstable foliation. We may obtain this element by
slightly moving a off the critical direction. In our example, we may take b = (1, —log2/log 3—n),
where 77 > 0 is small. Now, we use the fact that both the measurable hulls of partitions into leaves
of the stable and unstable foliation generate the Pinsker o-algebra (see [1, p.27]). By applying this
fact to b, we obtain H(W') = H(W & W").

Since we have H(W @ W) < W & W"” < W and H (W) is the finest coarsening of W, we
have H(W & W") < H(W). Combining the results thus far, we obtain &, < H (W), as desired.

4.6 Conclusion

Following [3][Section 2.2.2], we see that, for almost every leaf L of the foliation W, the conditional
measure /i7, is invariant under the set of translations of full 117, measure. Then, the arguments in
[3][Section 2.2.1] give our desired result. The arguments in 2.2.1 and 2.2.2 are general, and no

remark needs be added for our special case.
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