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Abstract

Furstenberg conjectured that the Lebesgue measure is the unique non-atomic ergodic probabil-
ity measure on the circle that is invariant for both the doubling and tripling maps. Furstenberg
proved in 1967 that every minimal set is either finite or the whole space, as a special case of his
results, which is a topological equivalent of the conjectured result. In 1990, Rudolph proved a
partial result, namely, that the Lebesgue measure is the only such measure if we add a condition
that the entropy of the measure is positive.

This expository paper illustrates the method described by Kalinin and Katok in 2001, which
is used to prove the result of Rudolph in a greater generality. The main objective of our paper
is to elaborate on how the method of Kalinin and Katok applies to the setting of Furstenberg’s
conjecture. A secondary objective is to discuss a topological analogue of Furstenberg’s conjecture,
namely, that theminimal sets of the action by the doubling and triplingmaps on the circle is either
finite or the circle itself.

2



Table of Contents

Chapter 1
Introduction 4

Chapter 2
Preliminaries 5
2.1 Topological Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Natural Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Measurable Hull of a Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3
Minimal Sets ofThe Action 8

Chapter 4
MainTheorem 9
4.1 The Structure of the Natural Extension . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Suspension Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Real FoliationW of S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Critical Time Direction forW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 The ergodic components of the action in the critical direction . . . . . . . . . . . 11
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3



Chapter 1

Introduction

Throughout the paper, we use the following notations. K is the circle R/Z. We usually use the
additive formK ∼= [0, 1]/0∼1. E2 : K → K is the doubling map E2(x) = 2x, and E3 : K →
K is the triplingmapE3(x) = 3x. α is theN2 group action onK defined byα(n, 0)(x) = En

2 (x)

and α(0,m)(x) = Em
3 (x). We say that a measure µ onK is α-invariant if and only if, for each

(n,m) ∈ N2 and measurable E ⊂ K , we have µ(α(n,m)−1(E)) = µ(E).
Furstenberg’s conjecture, which is the focal point of the paper, is the following1: Lebesgue

measure is the unique non-atomic α-invariant ergodic probability measure on K . Furstenberg
proved that every minimal set is either finite or the whole space as a special case of his results
in [2], which is a topological equivalent of the conjectured result. Rudolph [6] proved a partial
result, namely, that the Lebesgue measure is the only such measure if the entropy of the measure
is assumed to be positive.

This expository paper illustrates the method described by Kalinin and Katok in [3], which is
used to prove the result of Rudolph in a greater generality. The paper by Kalinin and Katok also
outlines how themethod applies to our setting, and themain objective of our paper is to elaborate
on this discussion. The secondary objective is to discuss the result that the minimal sets of the
action is either finite orK , which is a topological analogue of Furstenberg’s conjecture.

1For a history of the conjecture, see http://www.aimath.org/WWN/furstenburg/articles/html/3a/
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Chapter 2

Preliminaries

2.1 Topological Dynamics

We denote by O(x) the orbit of x ∈ K , i.e. O(x) = {α(n,m)(x) | n,m ≥ 0}. A set E ⊆ K is
called invariant if and only if α(n,m)(E) ⊆ E for any n,m ≥ 0. E ⊆ K is called minimal if
and only if E does not contain any non-empty, proper, closed invariant subset under the action.

x ∈ K is called a recurrent point for f : K → K , if and only if for each ϵ > 0 and N ≥ 0,
there exists n > N such that |fn(x)− x| < ϵ.

See [4] for discussions of expansive maps and recurrent properties of topological dynamical
systems.

2.2 Natural Extension

Given any measurable dynamical system (M,B, µ, f), where µ is a probability measure, one can
consider its natural extension (M̄, B̄, µ̄, σ). Thephase space is given by M̄ :=

{
(ωj) ∈ MN ∣∣ f(ωj) = ωj−1

}
,

i.e. ω0 is the current state, and each ωj for j > 0 is the jth past. Cylinders

C(Ei1 , · · · , Eik) := {(ωj) | ωi1 ∈ Ei1 , · · · , ωik ∈ Eik}

generate B̄.
If M has a topology, the topology on M̄ is generated by cylinders of open sets. If M has a

metric d, it can be lifted to a metric on d̄, and it is given by d̄(ω, η) =
∑∞

k=0 d(ωk, ηk)/2
k.

Remark. 1. For each x ∈ M , σ↾π−1(x) is uniformly contracting with respect to d̄.

2. If Λ is a closed invariant set ofM , then Λ̄ = π−1(Λ) is the unique closed invariant subset
of M̄ such that π(Λ̄) = Λ.

3. If µ̄ is an invariant measure for σ, then π∗µ̄ is invariant for f .
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Another notable property of a natural extension is the following, which is discussed in [7].

Proposition 2.2.1. LetM be a complete separable metric space, and f : M → M be continuous.
Every invariant probability measure µ admits a unique lift µ̄ to M̄ . Furthermore,

µ̄(C(E0, · · · , Ek)) = µ̄(C(f−k(E0) ∩ · · · ∩ f−1(Ek−1) ∩ Ek))

= µ(f−k(E0) ∩ · · · ∩ f−1(Ek−1) ∩ Ek).

2.3 Measurable Hull of a Partition

[1] contains a good discussion on ideas which we will need in our subsequent discussion, namely,
measurable partition, measurable hull, and Pinsker partition. We summarize the discussion here.

Let ξ and η be partitions of a compact metric space X with a Borel measure µ. We do not
require elements of a partition to be measurable. We denote by ξ ∨ η the join of ξ and η, which
is defined by ξ ∨ η := {U ∩ V | U ∈ ξ, V ∈ η}. We say that ξ is finer than η if and only if, for
each U ∈ ξ, there exists V ∈ η such that U ⊆ V . We denote this relation by η ≤ ξ. ≤ is a partial
order of the collection of all partitions ofX . We say that ξ and η are equivalent mod 0 if and only
if there exists a set E ⊆ X of full measure such that {U ∩ E | U ∈ ξ} = {V ∩ E | V ∈ η}, and
we write ξ = η(mod 0).

DefineB(ξ) to be the collection of allmeasurable subsets ofX that are unions of elements of ξ.
LetT be the Borelσ-algebra onX . Note that d(A,B) = µ(A△B) defines a pseudo-metric onX ,
which, in turn, defines an equivalence relation onX by A ∼ B ⇐⇒ d(A,B) = 0. We say that
(X, T , µ) is separable if and only if T /∼ is separable as a metric space. For a separable measure
space (X, T , µ) and a A ⊆ T , a partition of ξ of X into measurable sets such that A = B(ξ)
(mod 0) can be constructed [1, p.9], and we denote this by Ξ(A). We define the measurable hull
of a partition ξ to be H(ξ) := Ξ(B(ξ)). We say that a partition is measurable if and only if it is
equivalent mod 0 to its measurable hull. The measurable hull is the finest measurable partition
which coarsens ξ.

Let T : X → X be a measure-preserving map with a measure-preserving inverse, and ξ be a
partition consisting of measurable sets. Define

ξ− :=
∞∨
n=0

T−nξ.

ξ− is a measurable partition, and has the property that, if ξ− is invariant (i.e. T−1ξ− = ξ−) then
ξ has zero entropy, and otherwise, ξ has positive entropy [1, p.21]. Next, define

Π(ξ) := H

( ∞∧
n=1

T−nξ−

)
,
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where ξ ∧ η is defined as the finest partition that coarsens both ξ and η. For Π(ξ), we have the
following: if η ≤ Π(ξ) is a finite of countable partition with finite entropy, then the entropy of η is
zero [1, p.22]. Now, consider all partitions with such property. The collection is partially ordered
by≤, so the finest partition such that any coarser finite partition has zero entropy exists. We call
the partition the Pinsker partition, and denote it by π(T, ξ). An important fact is that the Pinsker
partition is the measurable hull of the partition into global unstable manifolds [1, p.27], which
appears in the discussion of the main theorem.
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Chapter 3

Minimal Sets ofThe Action

Proposition 3.0.1. The orbit of a rational point is periodic or eventually periodic. The periodic
orbits are {0} and the orbit of p

q where (q, 2) = (q, 3) = (p, q) = 1

Proof. This is easy to check.

Lemma 3.0.2. 1 is an accumulation point of {2n3m(mod 1) | n,m ∈ Z}.
Proof. Note that the orbit of 3−k consists of all points of the form q

3k
where (q, 3) = 1. Since

(3, 3k − 1) = 1, we have 3k−1
3k

∈
{
2n3−k(mod 1)

∣∣ n ≥ 0
}
for any k ≥ 0. It follows that

3k−1
3k

∈ {2n3m(mod 1) | n,m ∈ Z} for any k ≥ 0.

Theorem 3.0.3. The orbit of an irrational point is dense.
Proof. Fix α ∈ R\Q. Suppose O(α) is not dense. Note thatW := O(α) has an empty interior,
since otherwiseW = K by invariance ofW . Hence, every point ofW is a boundary point. Since
W is compact, the set of recurrent points R of E3↾W is non-empty. Fix x ∈ R. Since K\W
consists of open intervals, x is contained in the boundary of some open interval I . Without loss
of generality, we may assume that x is the right endpoint of I . Suppose that the length of I is l.

By the preceding lemma, there exists n,m > 0 such that x − l < 2n

3mx < x. Let ϵ := 2n

3m .
Since x is a recurrent point, there existsM > m such that

∣∣3M (x)− x
∣∣ < min

(
1−ϵ
ϵ x, l

)
. Then,

we have 2n3M−mx ∈ I , which contradicts the fact thatW is invariant.

Corollary 3.0.4. Every closed invariant set of the action is eitherK or finite.
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Chapter 4

MainTheorem

In this section, we follow the discussions in sections 2.1-2.3 of [3]. Let µ be a positive-entropy
ergodic invariantmeasure on (K,α). Our goal is to show thatµ is the Lebesguemeasure. Sections
2.1 and 2.2 describes the method for Cartan actions on the three-dimensional torus. Section 2.3
outlines how the method can be adopted to our setting.

4.1 The Structure of the Natural Extension

The natural extension of our action onK , which we denote by S, is the dual group to the discrete
group Z(1/2, 1/3), and it is isomorphic to a solenoid [5, Appendix]. S can be thought of as a
subset ofKZ2 ; more precisely, each point (ωi,j) has the form

ω0,0 ω1,0 ω2,0 · · ·
ω0,1 ω1,1 · · ·

ω0,2
... . . .

...

where E2(ωi,j) = ωi−1,j and E3(ωi,j) = ωi,j−1. The maps E2 and E3 extend to shifts onKZ2 ,
which we denote by σ2 and σ3, respectively. We have

σ2 :

ω0,0 ω1,0 ω2,0 · · ·
ω0,1 ω1,1 · · ·

ω0,2
... . . .

...

7→

E2(ω0,0) ω0,0 ω1,0 · · ·
E2(ω0,1) ω0,1 · · ·

E2(ω0,2)
... . . .

...
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and

σ3 :

ω0,0 ω1,0 ω2,0 · · ·
ω0,1 ω1,1 · · ·

ω0,2
... . . .

...

7→

E3(ω0,0) E3(ω1,0) E3(ω2,0) · · ·
ω0,0 ω1,0 · · ·

ω0,1
... . . .

...

Thus, the action onK extends to S. We denote this action by α, as we will no longer work with
(K,α), and there will be no confusion. π : S → K is defined by ω 7→ ω0,0. By Proposition 2.1,
µ lifts to a measure that is invariant with respect to the action on S. We denote this measure by
µ̄.

Note that once we fix ω0,0, ωi,0 for i ≥ 1, and ω0,j for j ≥ 1, ωi,j for each i, j ≥ 0 is
determined. For each ω0,0, there are two possible values of ω1,0 and three possible values of ω0,1.
The sameobservationholds forωi,0 andω0,j for each i, j ≥ 1, aswell. Note thatσ2 is a contraction
on S with respect to the usual metric, and its Lipschitz constant is 1/2, and the Lipshitz constant
of σ3 is 1/3. Hence, π : S → K can be thought of as a fiber bundle with Z2 × Z3 as fibers,
where Z2 and Z3 are 2- and 3-adic integers respectively. Recall that a 2-adic integer a can be
represented as a sequence (a0, a1, · · · ) via the power series expansion a =

∑∞
i=0 ai2

i, where
ai ∈ {0, 1}. The Z2 coordinate encodes the past of p with respect to E2 The same observation
holds for the Z3 coordinate.

4.2 Suspension Construction

Following the discussion in [3, Section 1.2.2], we obtain anR2-action starting from ourZ2-action
on S. We refer to the object thatR2 acts on as S, and the reason is as follows. First, theR2-action
is similar to the Z2-action on S, and second, we will focus on the R2-action instead of the Z2-
action from now on. We think of a line inR2 as a “time direction” of the action. The construction
allows us to speak of “acting in an irrational time direction,” as we do in the following discussion.

4.3 Real FoliationW of S

Recall that each point in S has the form

ω0,0 ω1,0 ω2,0 · · ·
ω0,1 ω1,1 · · ·

ω0,2
... . . .

...
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with restrictions E2(ωi,j) = ωi−1,j and E3(ωi,j) = ωi,j−1. Now, consider perturbing ω0,0,
and observe how it affects the past states. It is easy to see that when ω0,0 7→ ω0,0 + ϵ, we have
ω1,0 7→ ω1,0 + ϵ/2, ω0,1 7→ ω0,1 + ϵ/3, and so on for the rest of the past states. By varying the
amount of purturbation ϵ, we obtain a leaf going through (ωi,j). A collection of these leaves glued
together gives a foliation on S, which we denote byW . We refer toW as the real foliation of S.

4.4 Critical Time Direction forW

Given two points onW , the action by (1, 0) doubles the distance between the two, and the action
by (0, 1) triples it. Then, there is some −1 < y < 0 such that the action by (1, y) is an isometry
onW . The purpose of this section is to find such y by computing the Lyapunov exponents of the
action. See [5, Appendix] for a discussion on Lyapunov exponents for maps on p-adic integers.

For each x ∈ K , there is a small neighborhood U ∋ x such that π−1(U) can be identified
withU ×Z2×Z3. We letR×Q2×Q3 play the role of a tangent space at a point inU ×Z2×Z3.
We equip R × Q2 × Q3 with the product norm of the usual norms on R, Z2, and Z3. Then, the
Lyapunov exponent of the action by (x, y) ∈ R2 in the real direction is

λ(x, y) = lim
m→∞

log ||(x, y)m.(1, 0, 0)||
m

= lim
m→∞

log ||(2xm3ym, 0, 0)||
m

= lim
m→∞

xm log 2 + ym log 3
m

= x log 2 + y log 3.

Hence, the action by each point in the line
{
(x, y) ∈ R2

∣∣ x log 2 + y log 3 = 0
}
has zero

Lyapunov exponent. We call this time direction the critical direction forW .

4.5 The ergodic components of the action in the critical direction

First, we check that the action in the critical direction is ergodic. We already know that the action
by (n,m) for any n,m ∈ Z is ergodic, but not for any (x, y) ∈ R2. To prove the ergodicity of the
action in the critical direction, we show that each ergodic component of the action in the critical
direction is a union of leaves ofW . We follow the argument in [3][Section 2.2.3].

Let a be a non-zero element in the critical direction, such as a = (1,− log 2/ log 3), and let ξa
be the partition into ergodic components of a. LetH(W ) be the measurable hull of the partition
into the leaves ofW .

Let W ′ be the one-dimensional stable foliation of a. The Birkhoff sum of any continuous
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function on a stable leaf is constant, so every stable leaf of a is contained in an ergodic component
of a. Hence, we have ξa ≤ W ′. Since H(W ′) is the finest measurable partition which coarsens
W ′, we have ξa ≤ H(W ′).

Let W ′′ be the unstable foliation of a. Let b be an element not in the critical direction such
thatW ′ is its stable foliation, andW⊕W ′′ is its unstable foliation. Wemay obtain this element by
slightlymovinga off the critical direction. In our example, wemay take b = (1,− log 2/ log 3−η),
where η > 0 is small. Now, we use the fact that both the measurable hulls of partitions into leaves
of the stable and unstable foliation generate the Pinsker σ-algebra (see [1, p.27]). By applying this
fact to b, we obtainH(W ′) = H(W ⊕W ′′).

Since we haveH(W ⊕W ′′) ≤ W ⊕W ′′ ≤ W andH(W ) is the finest coarsening ofW , we
haveH(W ⊕W ′′) ≤ H(W ). Combining the results thus far, we obtain ξa ≤ H(W ), as desired.

4.6 Conclusion

Following [3][Section 2.2.2], we see that, for almost every leafL of the foliationW , the conditional
measure µL is invariant under the set of translations of full µL measure. Then, the arguments in
[3][Section 2.2.1] give our desired result. The arguments in 2.2.1 and 2.2.2 are general, and no
remark needs be added for our special case.
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