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6.1: Inverse functions
An invertible function is a function such that its efect can be reversed
(p.385 Figure 5). A geometric way to check whether a function is invertible
or not is to use the horizontal line test (p.384). An algebraic way to
check is to take the derivative. If f ′(x) > 0 or f ′(x) < 0 for all x, then f is
one-to-one.

Read Example 1 and 2. Then consider the following problem.

Exercise 1. Is f(x) = (x− 1)(x− 3)2 invertible?
Solution: Draw the graph (by hand or go to WolframAlpha). You ind

that the horizontal line y = 0 intersects the graph twice. Therefore, f is not
invertible.

Read Deinition 2. Pay attention to the domains and ranges of f and
f−1. We will discuss why it is important to note where the range of domain
of the inverse function f−1 in the next section.

Read Page 386 carefully. 3 and 4 are just reformulations of the deini-
tion of invertible functions (i.e. that f−1 reverses the efect of f).

5 discusses a way to ind the inverse function f−1.
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Exercise 2. Find the inverse function of f(x) = 1−
√
x

1+
√
x
.

Solution: Set y = 1−
√
x

1+
√
x
. Our goal is to solve for x. Multiply both sides

by 1 +
√
x to get

(1 +
√
x)y = 1−

√
x.

Then, move the terms around

y + y
√
x = 1−

√
x

⇐⇒ (1 + y)
√
x = 1− y

⇐⇒
√
x =

1− y

1 + y
.

Square both sides to conclude that x =
(

1−y
1+y

)2

. So f−1(x) =
(

1−x
1+x

)2.

Exercise 3. Check the solution of the previous exercise. In other words,
show that f(f−1(x)) = x = f−1(f(x)).

Theorem 7 is a quite important one. It says that you can compute the
derivative of f−1 indirectly, only using f ′ and f−1. Take a look at Example 7.
The problem asks to ind (f−1)′(1) for f(x) = 2x+cos x. The irst thing that
one tries (at least I do) is to ind the explicit formula of f−1, then diferentiate
f−1. So set y = 2x + cos x, then try to solve for x…But how? It turns out
there isn’t an easy way to ind the inverse of this function (input this into
WolframAlpha see what it returns: “inverse of 2x + cos(x)”). Now, Theorem
7 comes to rescue, which tells you that (f−1)′(1) = 1

f ′(f−1(1))
. We know that

f ′(x) = 2− sin(x), so we can reduce the last expression to 1
2−sin(f−1(1))

. The
last missing piece is the value of f−1(1). We don’t know the formula of f−1,
so it might seem that we’re stuck again. However, there’s a way to work
around this issue. Set y = f−1(1) for the sake of notation. By deinition, y
is the value such that f(y) = 1. With a little ingenuity, we see that y = 0

works: f(0) = 0 + cos0 = 1. So we conclude that y = 0. (Since f is one-to-
one, we know that there is only one such value.) Therefore, 0 = y = f−1(1),
and the solution is 1

2−sin(f−1(1))
= 1

2−sin 0
= 1

2
.
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Problems

1. (Exam 1 Sample A) Let f(x) = 4x+ cos πx. Find (f−1)′(3).

2. (Exam 1 Sample C) Suppose that f−1 is the inverse function of a difer-
entiable function f such that f(2) = 5 and f ′(2) = 1

3
. Find (f−1)′(5).

6.2*: The Natural Logarithmic Function
In the remaining sections of Chapter 6, we discuss several functions that we
will use heavily in the rest of the course. The irst is ln, the natural log
function. I hope you are familiar with this function already. 2 and 3 list
important properties of ln.

Exercise 4. Work out Example 2 without looking at the solution.

It is useful to have the graph of ln in mind. Input “Plot[Ln(x), (x, 0,
10)]” in WolframAlpha. This will give you the plot of ln(x) from x = 0 to
10. Things that you should note are:

1. ln is not deined for x ≤ 0.

2. ln is one-to-one (for x > 0), hence invertible.

3. ln(x) is negative for 0 < x < 1, and it goes to −∞ as x → 0 ( 4 ).

4. ln(x) is zero when x = 1.

5. ln(x) is positive for x > 1, and it goes to +∞ as x → ∞ ( 4 ).

You should become comfortable with diferentiating ln using the chain
rule. 2 says (ln(x))′ = 1

x
, and if we combine 2 with the chain rule, we

get 6 . 6 gives you two formulas, but personally I like this one better:
d
dx
(ln g(x)) = g′(x)

g(x)
.
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Exercise 5. Find (ln(2x))′.
A common mistake is to forget using the chain rule, and do (ln(2x))′ = 1

2x
.

The correct solution is the following.
Solution: Set g(x) = 2x. By the chain rule, (ln(2x))′ = (ln g(x))′ =

g′(x)
g(x)

= 2
2x

= 1
x
.

You should read Examples 6, 7, and 8 carefully.
Another property of ln is worth noting:

d

dx
(ln |x|) = 1

x
;

∫

1

x
dx = ln |x|+ C

( 7 and 8 ). Read Examples 11, 12, and 13 carefully. We will go through Ex-
ample 13 in class. The result of Example 13 is worth memorizing:

∫

tan xdx =

ln |sec x|+C. This formula (the integral of tangent) will come handy in some
of the more diicult integration problems.

The last topic in this section is logarithmic diferentiation. Take a look
at the expression in Example 14: y = x3/4

√
x2+1

(3x+2)5
. If you try to compute y′ in a

straightforward fashion, it would involve lots of keeping track of product rules
and chain rules, so you’d rather not do that. Notice that y is a product of the
three expressions: x3/4,

√
x2 + 1 = (x2 + 1)1/2, and (3x + 2)5. In such case,

logarithmic diferentiation makes computing y′ much, much easier. The main
idea is that diferentiating ln y = 3

4
ln x+ 1

2
ln(x2 + 1)− 5 ln(3x+ 2) involves

much less eforts than y. You should work through this example without
looking at the solution.

Problems

1. Expand the quantity ln
√

x2

z3
.

2. Expand ln x3/4
√
x2+1

(3x+2)5
.

3. Evaluate limx→1+ ln 1
x−1

.
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4. Diferentiate ln(x3 +
√
x2 − 1).

5.
∫

dt
8−3t

.

6.
∫

cosx
2+sinx

dx.

7.
∫ (lnx)2

x
dx.

8. (Exam 1 Sample A) Given that a, b > 0 and a ̸= b, evaluate limx→∞ ln(3+

ax)− ln(2 + bx).

9. (Exam 1 Sample A) Evaluate the integral
∫ e2

e
2 lnx
x

dx.

10. (Exam 1 Sample B) If f(x) = ln(x2 sin x) ind f ′(x).

11. (Exam 1 Sample C) Diferentiate the function f(x) = ln(sin(ln x)).

12. Diferentiate the function y = e5 cos
√
x.

6.3*: The Natural Exponential Function
The exponential function, exp, is also something that you should be already
familiar with. The textbook tells you to think of exp as the inverse of ln

( 2 ), but you can also think of it as the function exp(x) = ex, where e is
Euler’s constant. The properties of exp are:

1. exp is one-to-one, hence invertible (just like ln).

2. exp(ln x) = x, ln(exp x) = x i.e. exp and ln are inverses of each other
( 2 ). We can rewrite this as elnx = x and ln(ex) = x also ( 4 and 5 ).

3. The range of exp is (0,∞), i.e. exp(x) is always positive.

4. ex+y = exey; ex−y = ex

ey
; (ex)y = exy.

Just like ln, it’s useful to remember what the graph of exp looks like. Use
WolframAlpha to see the graph (try “exp(x)”).
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1. limx→∞ ex = ∞ i.e. ex is big when x is a large positive number.

2. limx→−∞ ex = 0, i.e. ex is close to zero when x is a large negative
number.

3. e0 = 1. Compare this with ln 1 = 0.

Two lectures ago, I made a small fuss about the range and domain of the
inverse function. This is a good moment to discuss it. Go back to Deinition
2 in p385. Take f(x) = exp x. Then, f−1(x) = ln x, and f−1(f(x)) = x for

all x. Note that it does not make sense to write f−1(−1) = ln(−1), because
ln(x) is not deined at x = −1 or any negative x. So, if f(x) were negative
for some x, then we’d in a big trouble, because f−1(f(x)) is not deined. But
we don’t get into such trouble at all. Deinition 2 says the domain of f−1

is the same as the range of f = exp, which is (0,∞), all positive numbers.
Another good example to consider is tan x. tan x is not one-to-one over

the entire x-axis (it’s a periodic function). However, it is one-to-one when re-
stricted to (−π/2, π/2), hence invertible. We call the inverse of tan as arctan.
The domain and range of tan are (−π/2, π/2) and (−∞,∞), respectively.
So the domain and range of arctan are (−∞,∞) and (−π/2, π/2).

This might seem like a technicality that only mathematicians care about.
(In fact, it kind of is.) But sometimes this can become the source of all
problems when doing integrations. Just keep in mind that mindlessly taking
inverses of functions can cause troubles. When something is wrong, think
once again whether your function is invertible, and, if it is, what a domain
of the inverse is.

Diferential and integral properties of exp are quite simple:

d

dx
ex = ex;

∫

exdx = ex + C.

You just need to be able to use them well in conjunction with the chain rule
and product rule.
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Exercise 6. Find d
dx
ex

2 .
Solution: By the chain rule, d

dx
ex

2

= (x2)′ex
2

= 2xex
2 .

Exercise 7. n is an integer. Find d
dx
ex

n .

Problems

1. Find (e2x)′.

2. Find
∫

e4xdx.

3. Find (ex
2

)′.

4. Evaluate limx→∞ e1/x
2 .

5. Evaluate limx→∞
x3

ex
.

6. Find (sin(et) + esin t)′.

7.
∫

ex(4 + ex)5dx.

8.
∫

ex
√
1 + exdx.

9.
∫

etanx sec2 xdx.

10. (Exam 1 Sample C) Find the inverse function of f , f−1(x), if f(x) =
ex

1+ex
.

11. (Exam 1 Sample D) Find the derivative of y = sin−1(e−x).

12. Find d
dx
ex ln a (a is a real number).
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6.4*: General Logarithmic and Exponential
Functions
We discussed the exponential function with base e in the previous section.
There are cases where we want to take the exponent of numbers other than
e, then manipulate, diferentiate, and/or integrate them. The deinition of a
general exponential function is ax = ex ln a. Note that if a = e, then ex ln e =

ex. All the usual properties of exp function apply to general exponential
functions ( 3 ). d

dx
(ax) = ax ln a ( 4 ) and

∫

axdx = ax

ln a
+ C (p440) are

formulas that you should memorize.

Exercise 8. Diferentiate 5x.
Solution: By the formula, (5x)′ = ln 5 · 5x.

Exercise 9. Diferentiate f(x) = 3cos 2x.
Solution: By the chain rule, f ′(x) = ln 3 · 3cos 2x · (cos 2x)′ = −2 ln 3 ·

3cos 2x · sin 2x.

There is a nice discussion of how know when to use the Power Rule or
Exponential Rule on p441, which you should read carefully.

Now that we know what general exponential functions are, we can also
deine general log functions. The textbook’s deinition is that the log function
with base a is the inverse of ax ( 5 ). But it’s easier to think of it simply as
loga x = lnx

ln a
( 6 ). The consequence of this formula is that d

dx
loga x = 1

x ln a
.

Problems

1. Find (x4 + 5x)′.

2. Evaluate
∫

x4 + 5xdx.

3. Evaluate
∫

x2x
2

dx.

4. Find (xcosx)′.
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5.
∫ log10 x

x
dx.

6.
∫

2x

2x+1
dx.

7. (Exam 1 Sample B) If f(x) = 3x, ind the second derivative f ′′(x).

8. (Exam 1 Sample B) If f(x) = x2x, ind f ′(e).

9. (Exam 1 Sample C) Diferentiate y = 3x
2 .

6.6: Inverse Trigonometric Functions
As discussed in Tuesday’s lecture, the trig functions are only invertible on
certain domains. Pay attention to what the domains of arcsin, arccos, and
arctan are. You should also know the formulas for the derivatives of inverse
trigonometric functions, which is summarized in table 11 . The derivations
of these formula, which are scattered throughout the section, utilize implicit
diferentiation.

Problems

1. Simplify tan(sin−1 x).

2. Show that (sec−1 x)′ = 1
x
√
x2−1

.

3. (arcsin
√
sin θ)′.

4. (arctan
√

1−x
1+x

)′.

5.
∫ π/2

0
sinx

1+cos2 x
dx.

6.
∫ 1/2

0
sin−1 x√
1−x2

dx.
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7.1: Integration by Parts

The main reason why integration by parts is useful is condensed in Examples
1-3. This technique is useful in many situations, and, in my opinion, the
most important one that we cover in this course. Example 4 shows a neat
trick involving integration by parts. You should remember this trick, because
if you didn’t know, you wouldn’t think about it.

Another way of writing down the formula for integration by parts is this:
∫

f(x)g(x)dx = F (x)g(x)−

∫
F (x)g′(x)dx,

where F (x) =
∫
f(x)dx (omitting the integration constant C). I like this

way of memorizing it better than the one in the textbook.

Problems

1.
∫
x cosxdx.

2.
∫
ex sin 2xdx.

3.
∫
lnxdx.

4.
∫
(lnx)2dx.

5. (More Integration Practice #25)
∫
sec−1 xdx (assume x > 1).
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6. (Sample A #14)
∫
x2 lnxdx.

7.
∫
t3e−t

2

dx

7.2: Trigonometric Integrals

For one reason or another (one of the major culprits being “Fourier series),
you will end up doing a lot of integration involving sines and cosines later on
in your academic career if you’re in engineering, physics, or anything related
to them. This section presents some nifty tricks to deal with integrals of
that kind. The formulas that you need to memorize are the following:

sin2 x+ cos2 x = 1

2 sinx cosx = sin 2x

1 + tanx = sec2 x

sin2 x =
1− cos 2x

2

cos2 x =
1 + cos 2x

2

sinx cos y =
sin(x− y) + sin(x+ y)

2

sinx sin y =
cos(x− y)− cos(x+ y)

2

cosx cos y =
cos(x− y) + cos(x+ y)

2

Problems

1.
∫
sin4 x cos3 xdx.

2.
∫
cos2 x sin 2xdx.

3.
∫
sin2 x cos2 xdx.

4.
∫
tan5 x sec3 xdx.
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5.
∫
tan2 x sec4 xdx.

6.
∫
sin 4θ cos 3θdx.

7.3: Trigonometric Substitution

This section is similar in spirit with 7.2: there are certain patterns that you
should recognize, and when you do, there are certain change of variables that
you should perform. The table in p502 gives three patterns, to which you
respond by setting your variable to a trig function. You should memorize
all three.

Problems

1.
∫ √

1− x2dx

2.
∫
x3

√

1− x2dx

3.
∫

dx

t2
√
t2−4

4.
∫

dx

t2−6t+13
.

5. (More Integration Practice #22)
∫

dx√
e2x−1

.

6. (Integration Practice #20)
∫

x sin−1
x√

1−x2
dx.

7. (Sample #17)
∫

1
x4

√
x2−9

dx.

7.4: Integration of Rational Functions by Partial
Fractions

This method is easier to learn than integration by parts or change of vari-
ables. The main idea is to reduce integration problems of a rational func-
tion (i.e. products and quotients of polynomials) to integrating 1

x
and 1

x2+1
,

which we know very well. There are four cases that the section presents.
Read each of them, and get your hands dirty afterwards.
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Problems

1.
∫

x

x−1dx.

2. x+4
x2+2x+5

dx

3.
∫

x

x2−4
dx

4.
∫

x
6

x2−4
dx

5.
∫

x
2+1

(x−3)(x−2)2
dx.

6.
∫

x
3+x

2+2x+1
(x2+1)(x2+2)

dx.

7.
∫

x
4+3x2+1

x5+5x3+5x
dx.

8. (Sample A #12)
∫

5x+2
x2+x

dx.

9. (Sample C #14)
∫

x+1
x2−5x+6

dx.

7.5: Strategy for Integration

Now that you have several integration techniques up your sleeve, you are
ready to start doing problem solving. There’s a book about problem solving
by a mathematician George Polya called “How to Solve It.” https://en.

wikipedia.org/wiki/How_to_Solve_It Its wikipedia page describes the “four
principles” of problem solving, which is the essense of the book. You should
read it (not the book, but the wiki page).

In my opinion, reading this book doesn’t make you a better problem
solver. The four principles are so obvious that no one has a hard time
understanding them. (I especially like one of the suggestions for the second
principle: “Be creative.”) The tough part, however, is to actually do it.
There’s no algorithm for hard problems, because every hard problem is
hard in its own way. The only way of become a good problem-solver is by
experience. So you can skip the reading part of this section (though you
might want to come back to it every now and then), and skip to p523-524,
which lists 82 integration problems. Do as many of them as you can.
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Problems

1.
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