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6.8: Indeterminate Forms

As per usual, you should take a look at all examples. There are seven types
of indeterminate forms discussed in this section:

1. 0
0

2. ∞
∞

3. 0 · ∞

4. ∞−∞

5. 00

6. ∞0

7. 1∞

Make sure you read examples corresponding to each of these.
Roughly, l’Hopital’s rule says this: if f(a) = g(a) = 0, then limx→a

f(x)
g(x) =

slope of f(x) at x=a

slope of g(x) at x=a
. As we know, “slope of f(x) at x = a” is f ′(a). So we

get the formula limx→a
f(x)
g(x) = f ′(x)

g′(x) . You can use l’Hopital’s when the limit
has the form 0

0 or ∞
∞ .

Other types of indeterminate limits can be computed by applying l’Hospital.
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Exercise 1. Show that limx→0+ x lnx = 0.
Solution: Note that f(x) = x lnx is not deined when x ≤ 0. But the

graph of f(x) (Figure 5 in p473) approaches zero as x get closer and closer
to zero. We have limx→0+ x = 0 and limx→0+ lnx = −∞, so limx→0+ x lnx

has the indeterminate form 0 ·(−∞). x lnx is not a fraction, but it turns out
there’s a clever application of l’Hopital’s rule. First write x lnx = lnx

1/x . Then,
apply l’Hopital’s rule to get limx→0+

lnx
1/x = limx→0+

1/x
−1/x2 = limx→0+ −x =

0.

The following is an example (taken from Wikipedia) where you cannot
apply l’Hopital.

Exercise 2. Find limx→∞
x+sinx

x .
Solution: (Wrong solution) By l’Hopital, limx→∞

x+sinx
x = limx→∞

1+cosx
1 .

This limit does not exist, because cosx diverges.
This solution is incorrect, because the limit actually does exist! limx→∞

x+sinx
x =

limx→∞ 1 + sinx
x = 1.

Why does l’Hopital fail in this example? First, lets take a look at the
conditions that l’Hopital holds (also taken from Wikipedia).

1. limx→a f(x) = limx→a g(x) = 0 or ±∞

2. limx→a
f ′(x)
g′(x) exists

3. g′(x) ̸= 0 for each x ̸= a in some open interval containing a.

In this course, you can take a cavalier attitude in applying l’Hopital, since
we usually deal with “nice” functions with nice limits. But just remember
that you can’t apply l’Hopital to any functions. When you are getting
strange results, you might want to consider whether your function satisies
the conditions above.

Another example in which an application of l’Hopital can go wrong is
Example 5 in p472: limx→π−

sinx
1−cosx .

The last three types of indeterminate forms, namely 00, ∞0, and 1∞,
can be solved using the same principle: when you see something complicated
involving powers, use log (just like how you ind the derivative of things like
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xx with implicit diferentiation). Or you could use the deinition of general
powers, as Example 10 demonstrates.

Problems

1. (00) limx→∞
e−x

x2

2. (∞∞) limx→∞
ln

√
x

x2

3. (0 · ∞) limx→0+ x lnx

4. limx→∞ x sin(π/x)

5. (∞−∞) limx→1
x

x−1 − 1
lnx

6. limx→0 cscx− cotx

7. (00) limx→0+ x
√
x

8. (∞0) limx→∞ x
1

ln x

9. (1∞) limx→1(2− x)tan(πx/2)

10. Exercises 1-66 (p477-478)

7.8: Improper Integrals

What’s so “improper” about improper integrals? In a formal and rigorous
deinition of integration of single-variable functions, an integral is deined
only over intervals of inite lengths. (A bit of digression here: Newton
and Leipniz invented integration, but it was Bernhard Riemann who made
the theory of integration logically sound. The integration that we use in
calculus courses is called “Riemann integration,” in order to distinguish it
from other deinitions of integrations.) This is why an integral like

∫∞
0 e−xdx

is “improper.”
Improper integrals of this type are those of the forms

∫∞
a f(x)dx,

∫ a
−∞ f(x)dx,

and
∫∞
−∞ f(x)dx. For practical purposes, you already know how to do these

kinds of integrals (i.e. do the corresponding indiinite integral, then plug in
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∞ (or −∞). However, it’s sometimes useful to know that when you “plug
in ∞,” what you actually do is, by deinition ( 1 ), to take your variable to
the limit x → ∞. In Example 2 (p545), you can use l’Hopital’s rule when
evaluating tet at t = ∞, because of the deinition.

Exercise 3. Determine whether the integral
∫∞
−∞ x3dx is convergent.

Solution: (Wrong solution)
∫ ∞

−∞
x3dx =

∫ ∞

0
x3dx+

∫ 0

−∞
x3dx = lim

t→∞

∫ t

0
x3dx+ lim

t→−∞

∫ 0

t
x3dx

= lim
t→∞

t4

4
− lim

t→−∞

t4

4
= lim

t→∞

t4

4
− lim

t→∞

t4

4
= lim

t→∞

(

t4

4
−

t4

4

)

= 0.

(Correct solution)
∫ ∞

0
x3dx = lim

t→∞

∫ t

0
x3dx = lim

t→∞

t4

4

So
∫∞
0 x3dx diverges. If one of the integrals diverges, then we say

that the original integral diverges (it’s how we deined this type of
improper integral in 1 (c)). Hence,

∫∞
−∞ x3dx diverges.

Note that the deinition is similar for an integral with discontinuity in
the region of integration. See 3 (c), then read Example 7 to get the feel of
it.

Example 4 and 2 is worth remembering. Perhaps not now, but we’ll
use this fact in Chapter 11.

Improper integrals of the second type are those with discontinuities.
Read 3 , then take a look at the following example.

Exercise 4. Compute
∫ 1
0 lnxdx.

Solution:
∫

lnxdx = x lnx − x + C (integration by parts). So we want
to evaluate x lnx−x at x = 1 and x = 0. But x lnx is not deined at x = 0!
This is where 3 (a) comes in. You are supposed to interpret

∫ 1
0 lnxdx as

limt→0

∫ 1
t lnxdx. So instead of x lnx− x|1x=0, we need to do limt→0 x lnx−

x|1x=t to get the inal answer. The result is
∫ 1
0 lnxdx = limt→0 x lnx−x|1x=t =

limt→0(0− 1)− t ln t = −1, because limt→0 t ln t = 0.
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In this example, we had a discontinuity at an edge of the region of
integration. A more substantial modiication is required when the integrand
has a discontinuity inside the region of integration.

Exercise 5. Compute
∫ 3
1

dx
(x−2)2

Solution: (Wrong solution)
∫ 3
1

dx
(x−2)2

= − 1
x−2 |

3
x=1 = −2.

This is wrong. In fact, the integral does not converge. The error in
the computation above is in ignoring the discontinuity of 1

(x−2)2
at x = 2

(because the function is not deined there).
To get the correct answer, we need to use the deinition of integrals whose

integrands have discontinuities. To do so, we split the integral into two at
the discontinuity, i.e.

∫ 3
1

dx
(x−2)2

=
∫ 2
1

dx
(x−2)2

+
∫ 3
2

dx
(x−2)2

. Then, evaluate
the two integrals separately using 3 (a,b).

∫ 2
1

dx
(x−2)2

= limt→2

∫ t
1

dx
(x−2)2

=

limt→2−
1

x−2 |
t
x=1 = limt→2−

1
t−2 − 1 = ∞. (Here, limt→2 is to be intepreted

as limt→2− , because you integrate from 1 to 2.) So the integral diverges, by
3 (c).

The last topic in this section is Comparison Theorem. Note that both
f(x) and g(x) must be non-negative (i.e. f(x), g(x) ≥ 0) in the region of
integration. Example 9 is a good demonstration of this theorem, because
e−x2 is a function whose antiderivative we cannot ind. Nevertheless, we can
show that the integral converges thanks to the theorem.

Problems

1.
∫∞
−∞ xe−x2

dx

2.
∫ 1
0 lnxdx

3.
∫∞
−∞ cosπtdt

4.
∫∞
1

lnx
x dx

5.
∫ 3
0

dx
x−1

6.
∫ 3
−2

dx
x4
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7.
∫ π
π/2 cscxdx

8.
∫ 0
−∞

dx
3−4x

9. Exercises 1, 2, 5-40, 49-54, 57-59 (p551-552)
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11.1: Sequences

A sequence is a discrete version of a function. The limit of a sequence is
deined in essentially the same way. Most theorems that hold for limits of
functions also hold for limits of sequences. One exception is l’Hopital’s rule.
However, there is a way to apply l’Hopital’s rule indirectly to computing
limits of sequences, as the following example demonstrates.

Exercise 1. Find limn→∞
ln(1/n)

n .
Solution: You should irst note that this limit is indeterminate. The

idea here is to use Theorem 3 . Consider f(x) = x lnx. The theorem tells
you that limn→∞

ln(1/n)
n = limx→0 x lnx. You know from Section 6.8 that

limx→0 x lnx = 0, where

The intuitive deinition of limit usually works, but when you are con-
fused, use the formal deinition 2 . I think of the deinition in 2 in this
rephrased version: the limit of an is L (and denote limn→∞ an = L) if an is
close to L for every large enough n.

Note that limn→∞ an = ∞ means something a bit diferent from the
deinition of limit when the limit is inite. See 5 . It says: for any positive
number M , an is bigger than M when n is large enough.

Not every sequence is convergent. Take an = cos(nπ) for example.
limn→∞ an does not exist because of the same reason limx→∞ cos(πx) does
not converge.
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The table in p717 lists algebraic properties of limit. You see the limit
operation for sequences behave in the same way as that for functions. lim

is a bit nicer than
∫

in that lim(an · bn) = lim an · lim bn holds.
Theorem 6 is an extremely useful one. It says: if the limit of the

absolute values of terms is zero, then the original sequence also converges to
zero.

Exercise 2. Show that limn→∞
sinnπ

n = 0.
Solution: We have

∣

∣

sinnπ
n

∣

∣ ≤ 1
n . So limn→∞

∣

∣

sinnπ
n

∣

∣ ≤ limn→∞
1
n = 0.

Therefore, limn→∞
sinnπ

n = 0 by Theorem 6 .
Remark: Theorem 6 and bounding absolute values of terms from above

are commonly used together.

Another useful theorem is the Squeeze Theorem (p718, above 6 ). (You
must’ve seen this theorem used for functions.)

Exercise 3. Show that limn→∞
1
n sin(1/n) = 0.

Solution: Since −1 ≤ sin(1/n) ≤ 1, we have − 1
n ≤ 1

n sin(1/n) ≤ 1
n .

Both 1
n and − 1

n goes to zero as n → ∞. Then, by the squeeze theorem,
limn→∞

1
n sin(1/n) = 0.

Theorem 12 gives an easy criterion for determining whether a increasing
(or decreasing) sequence converges. Note, however, that it doesn’t tell you
the limiting value of a sequence. This theorem will be a useful tool in later
sections when we discuss convergence of series.

Problems

Determine whether the sequence converges or diverges. If it converges, ind
the limit.

1. an = 1+n
n2

2. an = (−1)n
2

3. an = 3n

1+2n

4. an = 1 + 4n

5n
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5. an = 5n

4n

6. an = n sin(1/n)

7. an = ne−n

8. an =
√

3+2n2

8n2+n

11.2: Series

You can think of a series as a sum of ininitely many numbers. You can
also think of series as a discrete version of integration. In Section 7.8, we
discussed what it means for an integral to converge or diverge. The rest of
this chapter is devoted to discussing when convergence properties of series.

Usually, one starts with a series to deine a sequence. Let {an} be a
sequence. Then the corresponding series is

∑∞
n=1 an (you don’t have to

start from n = 1; any number works). Let me start with a few examples
before getting into the formal deinition.

1. Consider the sequence an = 1. Then, the corresponding series is
∑∞

n=1 an =
∑∞

n=1 1. Intuitively, this series diverges to ∞.

2. Consider the sequence an =
(

1
2

)n. The corresponding series is
∑∞

n=1 an =
∑∞

n=1

(

1
2

)n. By a geometric argument, one can show that
∑∞

n=1

(

1
2

)n
=

1.

3. This is the last preliminary example and also my favorite one. This
example illustrates a reason why we should care about convergence
of a series. Let an = (−1)n−1. Then, the corresponding series is
∑∞

n=1(−1)n−1. Let’s try to compute the value of this series with an
elementary method. (Warning: whatever happens below is wrong.)
First, write out terms of the series:

∞
∑

n=1

(−1)n−1 = 1 + (−1) + 1 + (−1) + 1 + (−1) · · ·
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Note that the pattern 1 + (−1) repeats. If we group up these pattern
and do additions within each patten, we get

∞
∑

n=1

(−1)n−1 = (1 + (−1)) + (1 + (−1)) + (1 + (−1)) · · ·

= (0) + (0) + (0) · · ·

So the answer is 0! (Reminder: this is wrong.)

Actually, we can group terms together in a diferent way. Leave the
irst 1 term, and group together the pattern (−1) + 1:

∞
∑

n=1

(−1)n−1 = 1 + ((−1) + 1) + ((−1) + 1) + ((−1) + 1) · · ·

= 1 + (0) + (0) + (0) · · ·
= 1

So we got 1 as an answer. Therefore,

0 =

∞
∑

n=1

(−1)n−1 = 1

So we have a proof that 0 = 1? Something must have went wrong. In
fact,

∑∞
n=1(−1)n−1 is a divergent series. It means that we don’t assign

a value to
∑∞

n=1(−1)n−1 at all.

Formally, a series is deined as the limit of “partial sums.” In the notation
of 2 , we say that a series converges if the limit of sn exists. When the limit
does not exists, we say that it diverges. As in the case of integrals, a series
may “diverge to ininity,” but we don’t say that it “converges to ininity.”
Again, ±∞ is not considered a number.

Just like integrals, there aren’t many series that we know how to evaluate.
The geometric series ( 4 ) is one of the few series that we know the formula
for. Note that the formula holds only if |r| < 1. In other cases (|r| > 1), the
geometric series diverges.
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Exercise 4. Show that
∑∞

n=1
1

n(n+1) is convergent, and its sum is 1. (This
is Example 7.)

The Test for Divergence 6 says that, if the tail of a sequence does not
go to zero, then the series diverges. You must note that the converse is
not true. There are sequences that go to zero, but the corresponding The
following is an important example.

Exercise 5. Show that
∑∞

n=1
1
n is divergent.

Solution: This series is so important that it has a name. It’s called the
harmonic series. A proof that the harmonic series is divergent is worked
out in Example 8. The integral test, which we discuss in 11.3, gives a nicer
proof.

8 shows algebraic properties of
∑

n. Note that
∑

n behaves like
∫

.
In particular, you cannot distribute

∑

n over a product, i.e.
∑

n anbn ̸=
∑

n an ·∑n bn.

Problems

1. When is
∑∞

n=0 x
n convergent?

2. Compute
∑∞

n=0 x
n (assuming it’s convergent).

3. Is
∑∞

n=1 sinn convergent?

4. Is
∑∞

n=1 lnn convergent?

5. Is
∑∞

n=1
n
√
2 convergent?

6. Compute
∑∞

n=2
2

n2−1
.

7. Compute
∑∞

n=5
1
3n .

8. Compute
∑∞

n=1
7n+1

10n

9. Compute
∑∞

n=1
1+2n

3n .
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11.3: The Integral Test & Estimates of Sums

You will see in 11.8–11.10 that every reasonably “nice” functions can be
represented by series, and this representation is often useful in applications
(such as physics). The main topic of our discussion until 11.7 will be con-
vergence tests of series, which will be used in 11.8–11.11. So far, we know
the convergence condition for the geometric series, and have the Divergence
Test (p733). This section introduced the Integral Test, and more tests are
to come in subsequent sections.

The Integral Test (p740) is what you want to consider using when the
terms of a sequence are easy to integrate. You should read the “NOTE”
right beneath the statement of the test. Also note that your sequence an

needs be positive and decreasing, so you can’t use the test for series like
∑∞

n=1
(−1)n

n or
∑∞

n=1 sinn + 1. Read the geometric explanations in p738-
739, then take a look at Example 2. In particular, it gives a proof that the
harmonic series

∑∞
n=1

1
n is divergent, which we left out in 11.2. Note the

correspondence between 1 and the result about
∫∞
1

dx
xp (p547).

When working with convergence of series, the following order of “rates
of growth”:

lnn < polynomial nk < 2n < en < n! as n → ∞

This says, essentially, that lnn goes to +∞ much slower than any polynomial
in n, and so on.

We are going to skip the part of this section about estimating the sum of a
series. We will cover this material if it becomes necessary later. In practical
applications, you have to approximate a series

∑∞
n=1 an by its inite sum

(because it takes ininite time to add ininitely many numbers), when you
can’t ind a formula for the series. In such a case, you want to know how
close your inite sum, say

∑10000
n=1 an, is to the value of the series

∑∞
n=1 an.

Furthermore, as in Example 5(b), theoretical results can tell you how big
your k needs to be, so that

∑k
n=1 an is close enough to

∑∞
n=1 an for your

purpose.
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Problems

Determine whether the series converges.

1.
∑∞

n=1
(lnn)2

n

2.
∑∞

n=1
1
n3

3.
∑∞

n=1
1

3n+2

4.
∑∞

n=1
1
nπ

5.
∑∞

n=5 n
1−

√
2

6.
∑∞

n=1
1√
n+4

7.
∑∞

n=1
1

n lnn

8.
∑∞

n=1
n2

n3+1

11.4: The Comparison Tests

The Comparison Test for series works in almost exactly the same way as
the Comparison Test for improper integrals (p549). Note that each term
in both your sequence an and the sequence bn to compare with need to be
positive.

The Limit Comparison Test says when two sequences an and bn have
the same rate of growth (= limn→∞

an
bn

= positive constant), then the cor-
responding series have the same convergence properties. It also requires
that the terms are positive. Example 3 illustrates a case where the Limit
Comparison Test works while the Comparison Test doesn’t.

These are usually the candidates to compare your series against:

1. p-series
∑∞

n=1
1
np

2. The geometric series
∑∞

n=1 ar
n−1

3.
∑∞

n=1 an such that f(n) = an is easy to integrate
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Problems

Determine whether the series converges.

1.
∑∞

n=1
(lnn)2

n

2.
∑∞

n=1
1√

n4−1

3.
∑∞

n=1
4n+1

3n−2

4.
∑∞

n=2
1

n
√
n2−1

5.
∑∞

n=1
n+5
n
√
n

6.
∑∞

n=1
n2

n3−n+1

7.
∑∞

n=1
e1/n

n

11.5: Alternating Series

We’ve seen that the harmonic series
∑∞

n=1
1
n is divergent. However,

∑∞
n=1

(−1)n

n

is convergent. When signs of the terms alternate

∞
∑

n=1

(−1)n

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
· · · ,

1
2 cancels a bit of 1, 1

4 cancels a bit of 1
3 , and so on. It turns out that the

“cancellations” make the terms go to zero fast enough so that the series is
convergent.

A generalization of this phenomenon is the Alternating Series Test. This
test applies to series of the form

∑∞
n=1(−1)n−1bn, where bn is positive. Note:

this test can only be used to test for convergence; i.e. you can’t use this test
to show a series is divergent.

Problems

1.
∑∞

n=1
(−1)n√

n
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2.
∑∞

n=1
(−1)n

ln(n+4)

3.
∑∞

n=1(−1)n n√
n3+2

4.
∑∞

n=1(−1)n 4n−1
3n+1

5.
∑∞

n=1(−1)n nn

n!

11.6: Absolute Convergence and the Ratio and Root
Tests

This section introduces three convergence tests.
Given a sequence an, the series obtaitained from it (i.e.

∑∞
n=1 an) is

said to be absolutely convergent, if the series obtained from taking the
absolute values of an is convergent. We use this concept as a convergence
test: if a series is absolutely convergent, then it is convergent 3 . In many
cases, it is easier to deal with |an| than an itself. Example 3 is one such
example. Note: this test can only be used to test for convergence; i.e. you
can’t use this test to show a series is divergent.

You should note that not every convergent sequence is absolutely con-
vergent. The alternating harmonic series that we saw in the previous section
is the archetypical conditionally convergent series.

Exercise 6. Show that the alternating harmonic series (
∑∞

n=1
(−1)n

n ) is con-
ditionally convergent.

Solution:
∑∞

n=1

∣

∣

∣

(−1)n

n

∣

∣

∣
=

∑∞
n=1

1
n is divergent, because it’s the har-

monic series. On the other hand, we know that the alternating harmonic
series is convergent by the Alternating Series Test.

The second test is the Ratio Test. We know that if
∑∞

n=1 an converges,
then an → 0. The idea behind the Ratio Test is to see how fast an approaches
0. You should think of an+1

an
as the rate of change. Then, limn→∞

∣

∣

∣

an+1

an

∣

∣

∣

measures how fast the sequence decreases (or increases) when n is big (i.e.
near the tail of the sequence). Intuitively, if the tail of an goes to 0 fast,
then the series converges. This is exactly what the Ratio Test says: if
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limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
is strictly less than 1. On the other hand, the ratio is greater

than 1, then the series is divergent.
The Ratio Test is gives you a convenient method to test for (absolute)

convergence especially when the sequence involves powers and factorials (see
Examples 4 and 5). However, there are somewhat surprising cases where the
test is inconclusive.

Exercise 7. Show that we cannot conclude the convergence properties of
∑∞

n=1
1
n2 or

∑∞
n=1 n.

Solution: For an = 1
n2 ,

lim
n→∞

∣

∣

∣

∣

∣

1
(n+1)2

1
n2

∣

∣

∣

∣

∣

= lim
n→∞

1
(

1 + 1
n

)2 = 1.

For an = n,
lim
n→∞

n+ 1

n
= lim

n→∞
1 +

1

n
= 1.

So the tests are inconclusive.

This is slightly disturbing.
∑∞

n=1
1
n2 is obviously absolutely convergent,

and
∑∞

n=1 n is obviously divergent! The moral of the story is that the Ratio
Test is not very sentitive. However, because of its convenience, the Ratio
Test is what I usually use irst when testing for convergence of a series.

The third and last test introduced in this section is the Root Test. This
test is a Ratio-Test-in-guise (read the note right below the statement of the
Root Test). Instead of looking at the limit of

∣

∣

∣

an+1

an

∣

∣

∣
, the Root Test asks for

the limit of n
√

|an| (note the absolute value around an). Just like the Ratio
Test, the Root Test is useful when an has the form ( Blah )n (see Example
6). And just like the Ratio Test, you should watch out for the inconclusive
case.

Problems

Determine whether the series is absolutely convergent, conditionally conver-
gent, or divergent.
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1.
∑∞

n=1
(−10)n

n5

2.
∑∞

n=1
n!

100n

3.
∑∞

n=1
en

2n+1

4.
∑∞

n=1

(

−2n
n+1

)5n

5.
∑∞

n=1
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11.7: Strategy for Testing Series

This section is similar in spirit to 7.5. The only way to become good at
solving problems is to solve problems, so go ahead and work on the end-of-
section problems, sample exams, and extra problems on the course webpage
(listed below).

You might ind the low chart on the department course webpage useful:
http://www.math.psu.edu/files/141seriesflowchart.pdf

Problems

1. Do end-of-section problems.

2. http://www.math.psu.edu/files/141series1.pdf

3. http://www.math.psu.edu/files/141series2.pdf

4. http://www.math.psu.edu/files/141series3.pdf
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