
Sections 11.8–11.11

Atsuya Kumano
Penn State University

Summer 2015

11.8: Power Series

In the second half of Chapter 11, we discuss one useful application of series.
Before delve into the details, let me start with an overview of 11.8–11.11.

As I mentioned in passing a couple times, many functions can be repre-
sented as series. In fact, I used the fact that cos(x) has the “power series
expansion”

∑∞
n=0

(−1)nx2n

(2n)! in the demo of the alternating sereis estimation
theorem. You can think of a power series as a polynomial with ininitely
many terms. To make a power series, you start with a sequence cn, which
we refer to as the “coeicients.” The power series corresponding to cn is
∑∞

n=0 cnx
n = c0 + c1x+ c2x

2 + · · · .
For example, take cn = n. The corresponding power series is

∑∞
n=0 nx

n =

0+x+2x2+3x3+ · · · . Just like for polynomials, we think of x as a variable.
For x = 0, the power series evaluates to

∑∞
n=0 n·0

n = 0+0+2·02+3·03+· · · =

0. For x = 1, the power series evaluates to
∑∞

n=0 n · 1n =
∑∞

n=0 n. Lets
pause for a moment and think what’s going on. When we pick a value for
x, we get back a series. So we can consider a power series as a function: set
f(x) =

∑∞
n=0 nx

n. As we showed already, f(0) = 0. But what about when
x = 1? We saw that f(1) =

∑∞
n=0 n. By the Divergence Test, this series is

divergent. Hence, f(x) is not deined at x = 1. In summary, this is how we
deine f(x) using the series

∑∞
n=0 nx

n:

1. Pick x = c.
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2. Consider the series
∑∞

n=0 nc
n, and determine whether it converges.

3. If convergent, the function f(x) is deined at x = c, and f(c) =
∑∞

n=0 nc
n. Otherwise, f(c) is undeined.

Try a few other values, and see if f(x) is deined there.
In the previous paragraph, we started with a power series, and tried

to deine a function using it. The main topic of discussion in 11.9 is the
opposite of this process. Given a function f(x), in what domain of f can we
represent it as a power series? Short answer: it depends on f . We will see
examples later.

We learn applications of power series throughout the sections. Difer-
entiation and integration become a simple task when you know the power
series diferentiation (Section 11.9). In 11.10 and 11.11, we see how the
power series representation is used to estimate values of functions.

That’s the overview of the rest of Chapter 11. Now moving onto 11.8.
I said earlier that a power series is like a polynomial of an ininite degree.
Just as you should draw a line between a series (which is like an ininite
sum) and inite sum, you should make a clear distinction between a power
series and polynomial.

With the aforementioned example
∑∞

n=0 nx
n and the discussion there in

mind, read Example 1-3. Then igure out when
∑∞

n=0 nx
n is convergent.

Exercise 1. Show that
∑∞

n=0 nx
n is convergent when |x| < 1.

Solution: Let an = nxn. We have

L = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(n+ 1)xn+1

nxn

∣

∣

∣

∣

= lim
n→∞

(

1 +
1

n

)

|x| = |x| .

When |x| < 1, we have L < 1 so the series is convergent. When |x| > 1,
we have L > 1 so the series is divergent. When |x| = 1, the Ratio Test
is inconclusive so we need to do extra work for x = ±1. When x = ±1,
the series is divergent by the Divergence Test. In conclusion,

∑∞
n=0 nx

n is
convergent when |x| < 1.

∑∞
n=0 cn(x− a)n is called a power series “centered at a.” To understand
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the terminology, think of f(x) = 2x, which can be thought of as a line
through the origin with slope 2. If we replace x with x − a, where a is a
positive number, we get g(x) = f(x − a) = 2(x − a). Then, g(x) is a line
through x = a with slope 2. So the operation of “replacing x with x − a”
shifts a function to the positive x-direction by a.

Note that in Examples 1-3, you only used the Ratio Test to determine
when the series is convergent. This is not a coincidence. In fact, when you
test for convergent properties of a power series, the Ratio Test gets the job
done in most cases. This is, in part, a consequence of Theorem 3 , which
says that power series have only three types of convergence. We will use the
terms “radius of convergence” and “interval of convergence” frequently, so
make sure you understand what they mean.

Problems

For what values of x does the series converge?

1.
∑∞

n=0 nx
n

2.
∑∞

n=0
(x−2)n

n

3.
∑∞

n=0
(−3)n

n
√
n
xn

4.
∑∞

n=0 n
nxn

5.
∑∞

n=0
(x−2)n

n2+1

6.
∑∞

n=0
n
4n (x+ 1)n

11.9: Representations of Functions as Power Series

(When we say “expand f(x) around x = a,” it means “get a power series
representation of f(x) centered at x = a.”)

Theorem 2 says that the rules of diferenciation and integration for
polynomials (which have inite degrees) hold for power series, as well. In
other words, you can treat power series like polynomials when diferentiating
and integrating.
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The power series representation in 1 was proved in an earlier section.
This formula can be used to ind power series representations of some ra-
tional functions (see Examples 1-3). Note that 1

1−x
is deined everywhere

except for x = 1, but its power series representation is deined only for
|x| < 1. Pick x = −1, for example. The function f(x) = 1

1−x
evaluates to

f(−1) = −1
2 , but sum∞

n=0(−1)n doesn’t have a value, because it diverges.
Let’s play around with this function a little bit more. When we expand

f(x) = 1
1−x

around x = 0, the power series didn’t carry any information of f
at x = −1. Suppose that, for whatever reason, we are interested in knowing
how f behaves near x = −1. To do so, we expand f at x = −1.

Exercise 2. Find the power series expansion of 1
1−x

at x = −1.
Solution:

1

1− x
=

1

2− (x+ 1)
=

1

2
·

1

1− x+1
2

=
1

2

∞
∑

n=0

(

x+ 1

2

)n

.

This series converges when
∣

∣

x+1
2

∣

∣ < 1 ⇐⇒ |x+ 1| < 2 ⇐⇒ −3 < x < 1.
Note that the interval of convergence for this expansion is larger than the
expansion at x = 0. The expansion at x = −1 agrees with the expansion at
x = 0, i.e.

∑∞
n=0

(

x+1
2

)n
=

∑∞
n=0 x

n, when |x| < 1.

Combining Theorem 2 and 1 , we can ind power series representations
for a wider variety of rational functions. Read Examples 5-8.

Problems

Find a power series representation of the function and determine the interval
of convergence.

1. 1
x+1

2. 1
x+2

3. x2

x+2

4. x
2x2+1
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5. 5
1−4x2

6. 3
x2−x−2

(use partial fraction)

7. ln(3− x)

8. ln(x2 + 4)

9. x2 tan−1(x3)

10. x
(1+4x)2

11. (x2+x)
(1−x)3

11.10: Taylor and Maclaurin Series

In 11.8, we were given a power series, and asked where it converged. In 11.9,
we were given a rational function (and its derivatives and antiderivatives),
and asked where it had a power series representation. This section is a
continuation of 11.9. Note that, in 11.9, we heavily depended on the power
series expansion of 1

1−x
to ind power series. Thus, so far, we only know how

to ind power series expansion for rational functions and functions related
to rational functions. We expand our scope in this section through studying
Taylor series.

Theorem 5 gives you a formula to ind the coicient of a power series
for f(x). It’s really important to note that this formula holds given the
power series converges at x = a. The series in 6 is called the Taylor
series (or Taylor expansion) of f . As the statement in 5 says, the power
series expansion of f at x = a exists, then it is given by the Taylor series.
So now the question is this: given a function f and a point x = a, how do
we determine whether a power series expansion of f at a exists?

To answer that question, we go back to the deinition of series. Try to
understand the discussion in p779 and Theorem 8 irst, then proceed to my
version of the same discussion. By Theorem 5 , we know that if the power
series expansion of f at x = a exists at all, then expansion has to look like
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this:
f(x) =

∞
∑

n=0

f (n)(a)

n!
(x− a)n.

This tells you that, if
∑∞

n=0
f (n)(a)

n! (x− a)n converges, then the series equals
f(x) (in an appropriate domain). This motivates you to consider Tk(x) =
∑k

n=0
f (n)(a)

n! (x − a)n, which is the k-th partial sum of the Taylor series.
In the book, Tk(x) is called the k-th degree Taylor polynomial of f at a.
limk→∞ Tk(x) is the only candidate for the value of f(x). If limk→∞ Tk(x)

converges (which is equivalent to say
∑∞

n=0
f (n)(a)

n! (x−a)n converges), then its
limit coincides with f(x). If limk→∞ Tk(x) diverges, then we conclude that
we can’t assign a value to f(x) using this power series, because there’s no
other candidate. Now, let’s talk about the remainder Rn, which is deined
as Rn(x) = f(x) − Tn(x). In other words, Rn is the diference between
the function and the n-th degree Taylor polynomial. Intuitively, we have
Tn(x) → f(x) as n → ∞ if and only if Rn → 0. This is what Theorem 8
says.

It’s necessary to consider Rn, because we want to make sure not
only that limn→∞ Tn(x) converges, but also the limit value coincides
with f(x). For example, Example 2 tells you that ex has the Maclaurin
series ex =

∑∞
n=0

xn

n! for all x. You could easily show that the series
∑∞

n=0
xn

n!

converges for all x by the Ratio Test, but this doesn’t mean that the
series converges to ex! In most cases, the limit of Rn is diicult to
determine. For example, Rn for ex is given by Rk(x) = ex −

∑k
n=0

xn

n! .
Without the knowledge that limk→∞

∑k
n=0

xn

n! = ex, it’s hard to igure out
what the limit is going to be. This is why Theorem 9 is useful.

Examples 2-5 discuss how to ind power series expansions of ex, sinx,
and cosx. These serve as illustration of Theorem 8 and 9 . Also, you
should know the Maclaurin series for these functions.

The table in p786 lists the Maclaurin series that you should know.
Examples 10-13 are some applications of the techniques that we’ve learned

so far. I think all of them are neat.
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Problems

1.

11.11: Applications of Taylor Polynomials

Problems

1.
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Sections 10.1–4
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10.1: Curves Deined by Parametric Equations

There are common geometric objects that are not possible to represent math-
ematically as the graph of a function. The circle is an archetypical example.
The graph of f(x) =

√
1− x2 in the region x ∈ [−1, 1] is the upper half

of the circle centered at the origin of radius 1. In order to describe the
lower half, we need another function g(x) = −

√
1− x2. That we need two

functions to describe is not only cumbersome, but also brings issues, for ex-
ample, when we want to ind the equation of the tangent line at the points
where f(x) and g(x) intersect, namely, (1, 0) and (−1, 0). The main issue in
using the graph of a function to represent a geometric object is that a you
can assign only one y-value to each x-value, because otherwise a property
of function is violated. One way to get around this limitation is to describe
the circle by a Cartesian equation: x2 + y2 = 1. Another way is to use the
“parametric equation.” Let f(t) = cos t and g(t) = sin t. Then, deine a
(vector-valued) function (f(t), g(t)). This is a function that take a value for
t, and returns a point in the plane, where f(t) is the x-coordinate, and g(t)

is the y-coordinate. We say that the parametric equation x = f(t), y = g(t)

(0 ≤ t ≤ 2π) represents the circle.
You should think of the parametric equation (f(t), g(t)) as a function

whose domain is time t. Suppose that the parametric equation gives a curve
C. Imagine that you are a point on C, at time t = 0, you are sitting at the
point (f(0), g(0)) on the curve, and you move forward as t grows.
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Examples 2-3 show how to go from a parametric equation to a Cartesian
equation. It’s also possible to go from a Cartesian equation to a parametric
equation (Example 6).

The parametric equation has the advantage over a Cartesian equation
that it is a function. This allows us to calculate the length of a curve using
calculus, which is the topic of discussion in the next section.

Problems

Eliminate the parameter to ind a Cartesian equation of the curve

1. x = cos θ, y = sin θ (−π ≤ θ ≤ π)

2. x = 2 cos θ, y = 2 sin θ (0 ≤ θ ≤ 2π)

3. x = 3− 4t, y = 2− 3t

4. x = 1− 2t, y = 1

2
t− 1 (−2 ≤ t ≤ 4)

5. x =
√
t, y = 1− t

6. x = 1

2
cos θ, y = 2 sin θ (0 ≤ θ ≤ 2π)

7. x = sin t, y = csc t

8. x = e2t, y = e2t

10.2: Calculus with Parametric Curves

If we are given a curve which is the graph of a function, we know how to com-
pute the tangent line of a point, the area under the curve, and the length of
the curve. However, as discussed in the previous section, not every geomet-
ric object can be described using functions easily. This section discusses how
to compute these quantities for a curve described by a parametric equation.

Given a curve and a point, we can ind the tangent line at the point.

The formula is 1 . You also ind the formula for d2y

dx2
, which you use to ind

the curvature of a curve, at the bottom of the same page. When a curve
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self-intersects, you may ind more than one tangent lines. Read Examples 1
and 2.

The area under the curve x = f(t), y = g(t) is given by the formula in
p671. (Note: the author uses a change of variable from x to t via x = f(t)

to derive the formula.)

Exercise 1. Find the area of the upper half unit disk.
Solution: The parametric equation for the upper half circle is x = cos θ,

y = sin θ for 0 ≤ θπ. The area under it is given by

∫

0

π

sin θ(cos θ)′dθ = −
∫

0

π

sin2 θdθ = −
∫

0

π

1− cos 2θ

2
dθ = −

(

θ

2
− sin 2θ

4

)0

π

=
π

2
.

The formula in Theorem 5 gives the length of a curve between time
t = α and β. Example 5 computes the length of a curve represented as a
parametric curve, which is not obvious how to represent using a Cartesian
equation.

An application of 5 is the surface area of an object obtained by rotating
a curve around an axis. Read Example 6 .

Problems

Find an equation of the tangent(s) to the curve at the point corresponding
to the given value of the parameter.

1. x = t cos t, y = t sin t, t = π

2. x = 6 sin t, y = t2 + t, t = 0

Find dy/dx and d2y/dx2.

1. x = t3 + 1, y = t2 − t.

2. x = cos 2t, y = cos t.

1. Find the points on the curve x = t3− 3t, y = t2− 3 where the tangent
is horizontal or vertical.
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2. Find the area enclosed by the curve x =
√
t, y = t2−2t and the x-axis.

3. Find the area enclosed by the curve x = 1 + et, y = t − t2 and the
x-axis.

Set up an integral that represents the length of the curve. Don’t evaluate
it.

1. x = t2 − t, y = t4, 1 ≤ t ≤ 4

2. x = t+
√
t, y = t−

√
t, 0 ≤ t ≤ 1

Find the length of the curve.

1. x = et + e−t, y = 5− 2t, 0 ≤ t ≤ 3

2. x = 3 cos t− cos 3t, y = 3 sin t− sin 3t, 0 ≤ t ≤ π

3. x = cos t+ ln(tan t
2
), y = sin t, π

4
≤ t ≤ 3π

4

Find the area of the surface obtained by rotating the curve about the
x-axis.

1. x = 3t− t3, y = 3t2, 0 ≤ t ≤ 1

10.3: Polar Coordinates

1 shows the familiar rule for going between a Cartesian equation and a
polar equation. The equations in 2 (r2 = x2 + y2 and tan θ = y

x
) is a

consequence of 1 . 2 comes in handy when converting a polar equation to
a Cartesian equation (see Example 6b). On the other hand, to go from a
Cartesian equation to a polar equation, you use 1 . Since there are not many
illustrative examples in this section, try a couple end-of-section problems
(15-26) to get used to using 1 and 2 . As a convention, a polar equation
has the form r = f(θ), i.e. r equals a function in θ. That is, you may need
to manipulate a equation to isolate r from θ.
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For now, you can skip the paragraph titled “Symmetry” (p683). This is
not something absolutely necessary, although you might want to come back
to it when sketching curves like cos 2θ.

Recall that, when you did u-substitutions in integrals, you had to watch
out what happens to dx. Similarly, formulas involving derivatives require
modiications when changing variables. Recall the formula from the previous
section

dy

dx
=

dy/dθ

dx/dθ
.

To get the formula for polar coordinates, we want to use the following change
of variables x = r cos θ, y = r sin θ. Diferentiate both sides of x = r cos θ

with respect to θ to get dx

dθ
=

dr

dθ
sin θ − r sin θ (note the product rule).

Similarly, we get dy

dθ
=

dr

dθ
cos θ+ r cos θ. Hence, the formula for dy

dx
of polar

curves is the following

dy

dx
=

dr
dθ

sin θ + r cos θ
dr
dθ

cos θ + r sin θ
.

You should become familiar with the examples described in the section.
Among other things, you should learn to sketch them. You will encounter
these polar curves frequently, and on the other hand, you won’t see polar
curves that are very diferent from these. I will demonstrate how to sketch
as many examples as possible in class.

Problems

Find a polar equation for the curve represented by the given Cartesian equa-
tion.

1. y = −1

2. 4y2 = x

Find a Cartesian equation for the curve.

1. r = 4 sec θ
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2. r = cos θ

3. θ =
π

3

4. r = tan θ sec θ

Find a polar equation for the curve represented by the given Cartesian
equation.

1. y = x

2. 4y2 = x

3. xy = 4

4. y = 1 + 3x

Sketch the graph of the polar curves.

1. r = 1 + sin θ

2. r = cos 2θ

3. r = sin θ

4. r = 1 + sin θ

5. r = 1− cos θ

6. r = 1 + 2 cos θ

7. r = ln θ

8. r = cos 5θ

9. r = 2 + sin θ

Find the slope of the tangent line to the given polar curve at the speciied
point.

1. r = 2− sin θ, θ = π
3

2. r = cos(θ/3), θ = π
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10.4: Areas and Lengths in Polar Coordinates

Recall that the area of a sector is given by 1

2
r2θ. It is possible to generalize

this formula. The area of the region between the origin and a polar curve
r = f(θ) from θ = a to θ = b (I will explain what this wording really means
in class) is given by

∫ b

a

1

2
(f(θ))2dθ.

Note that, when f(θ) is a constant function, we get the area of a sector.
Read Example 1. Example 2 gives an example that shows how to compute
the area between two curves.

Read the “CAUTION” in p691. The main point is that solving equations
doesn’t necessarily give you all points of intersections.

5 is the polar curve version of the arc length formula. Compare it with
5 in p673.

Problems

Sketch the curve and ind the area it encloses.

1. r = 1− sin θ

2. r = 4 + 3 sin θ

Find the area of the region enclosed by one loop of the curve.

1. r2 = sin 2θ

Find the area of the region that lies inside the irst curve and outside
the second curve.

1. r = 1− sin θ, r = 1

2. r = 2 + sin θ, r = 3 sin θ

3. r = 3 sin θ, r = 2− sin θ

Find the area of the region that lies inside both curves.
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1. r = 1 + cos θ, r = 1− cos θ

2. r = 3 + 2 cos θ, r = 3 + 2 sin θ

Find the length of the polar curve.

1. r = 5θ, 0 ≤ θ ≤ π

2. r = 2(1 + cos θ), 0 ≤ θ ≤ 2π
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