$Mini\text{-}exam \ 6 \ (10 \ \text{points total})$

MATH 141, SUMMER 2015

NAME:

Problem 1 Find the slope of the tangent line to the curve $r = \tan \theta \sec \theta$ at $\theta = \frac{\pi}{3}$.

- (a) The tangent line is vertical.
- (b) $\sqrt{3}$
- (c) 0
- (d) $-2\sqrt{3}$
- (e) $2\sqrt{3}$

Problem 2 Find the slope of the tangent line to the curve $x=t-\sin t,$ $y=2(1-\cos t)$ at $t=\frac{\pi}{3}.$

- (a) The tangent line is vertical.
- (b) $\sqrt{3}$
- (c) $\frac{2}{\sqrt{3}}$
- (d) $-2\sqrt{3}$
- (e) $2\sqrt{3}$

Problem 3 Find the Cartesian equation of the curve with parametric equations $r = \tan \theta \sec \theta$.

- (a) $y = x^2$
- (b) $x = y^2$

(c)
$$x^2 + y^2 = x$$

$$(d) x^2 + y^2 = y$$

(e)
$$\sqrt{x^2 + y^2} = x$$

Problem 4

- (a) Sketch the curves $r = 3\cos\theta$ and $r = 1 + \cos\theta$, and label all points of intersection. Work must be shown to gain the full credit.
- (b) Find the area of the region that lies inside the first curve and outside the second curve.